Bruhat interval polytopes
نویسندگان
چکیده
Let u and v be permutations on n letters, with u ≤ v in Bruhat order. A Bruhat interval polytope Qu,v is the convex hull of all permutation vectors z = (z(1), z(2), . . . , z(n)) with u ≤ z ≤ v. Note that when u = e and v = w0 are the shortest and longest elements of the symmetric group, Qe,w0 is the classical permutohedron. Bruhat interval polytopes were studied recently in the 2013 paper “The full Kostant-Toda hierarchy on the positive flag variety” by Kodama and the second author, in the context of the Toda lattice and the moment map on the flag variety. In this paper we study combinatorial aspects of Bruhat interval polytopes. For example, we give an inequality description and a dimension formula for Bruhat interval polytopes, and prove that every face of a Bruhat interval polytope is a Bruhat interval polytope. A key tool in the proof of the latter statement is a generalization of the well-known lifting property for Coxeter groups. Motivated by the relationship between the lifting property and R-polynomials, we also give a generalization of the standard recurrence for R-polynomials. Résumé. Soient u et v des permutations sur n lettres, avec u ≤ v dans l’ordre de Bruhat. Un polytope d’intervalles de Bruhat Qu,v est l’enveloppe convexe de tous les vecteurs de permutations z = (z(1), z(2), . . . , z(n)) avec u ≤ z ≤ v. Notons que lorsque u = e et v = w0 sont respectivement le plus court et le plus long élément du groupe symétrique, Qe,w0 est le permutoèdre classique. Les polytopes d’intervalles de Bruhat ont été étudiés récemment dans le papier de 2013 “The full Kostant-Toda hierarchy on the positive flag variety” par Kodama et le deuxième auteur, dans le contexte du treillis de Toda et la carte des moments sur la variété de drapeaux. Dans ce papier nous étudions des aspects combinatoires des polytopes d’intervalles de Bruhat. Par exemple, nous donnons une description par inégalités et une formule dimensionnelle pour les polytopes d’intervalles de Bruhat, et provons que chaque face d’un polytope d’intervalles de Bruhat est un polytope d’intervalles de Bruhat. Un outil essentiel dans la preuve de cette dernière affirmation est une généralisation de la célèbre propriété de lifting pour les groupes de Coxeter. Motivés par la relation entre la propriété de lifting et les R-polynômes, nous donnons aussi une généralisation de la récurrence standard pour les R-polynômes.
منابع مشابه
The cd-index of Bruhat Intervals
We study flag enumeration in intervals in the Bruhat order on a Coxeter group by means of a structural recursion on intervals in the Bruhat order. The recursion gives the isomorphism type of a Bruhat interval in terms of smaller intervals, using basic geometric operations which preserve PL sphericity and have a simple effect on the cd-index. This leads to a new proof that Bruhat intervals are P...
متن کاملQuasisymmetric Functions and Kazhdan-lusztig Polynomials
We associate a quasisymmetric function to any Bruhat interval in a general Coxeter group. This association can be seen to be a morphism of Hopf algebras to the subalgebra of all peak functions, leading to an extension of the cd-index of convex polytopes. We show how the Kazhdan-Lusztig polynomial of the Bruhat interval can be expressed in terms of this complete cd-index and otherwise explicit c...
متن کاملFlag Enumeration in Polytopes Eulerian Partially Ordered Sets and Coxeter Groups
We discuss the enumeration theory for flags in Eulerian partially ordered sets, emphasizing the two main geometric and algebraic examples, face posets of convex polytopes and regular CW -spheres, and Bruhat intervals in Coxeter groups. We review the two algebraic approaches to flag enumeration – one essentially as a quotient of the algebra of noncommutative symmetric functions and the other as ...
متن کاملEuler Enumeration and Beyond
This paper surveys recent results for flag enumeration of polytopes, Bruhat graphs, balanced digraphs, Whitney stratified spaces and quasi-graded posets.
متن کاملKazhdan-Lusztig-Stanley polynomials and quadratic algebras I M.J.Dyer
In [KL], Kazhdan and Lusztig associate a polynomial to each Bruhat interval in a Coxeter group; some of these “Kazhdan-Lusztig” polynomials now play an important role in several areas of representation theory. A similar family of polynomials has been associated to face latices of convex polytopes (see Stanley [St]). Both families of polynomials remain poorly understood in general, though they a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017